Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam@nitk.edu.in

https://sam.nitk.ac.in/

MA111 - Engineering Mathematics - II Problem Sheet - 5

Taylor Series and Maclaurin Series

- 1. What is the radius of convergence for the Maclaurin's series of
 - (a) $\tan^{-1} x$ (b) $\log(1+x)$ (c) $\frac{1}{(1+x)^2}$
- 2. Find the Taylor's Polynomial of order 5 for the following functions.
 - (a) $\tan x$ about x = 0 (c) $\sin x$ about $x = \pi/3$
 - (b) $\tan^{-1} x$ about x = 0 (d) $e^{x^2 2x}$ about x = 1
- 3. Find the Maclaurin's series for the following functions.
 - (a) $f(x) = \frac{1}{1+x^2}$ (b) $f(x) = e^{\cos x}$
- 4. Find the Taylor's series of the following functions. Also, find the radius of convergence and interval of convergence in each case.
 - (a) $\frac{1}{1-x}$ about x = -1 (b) $\frac{1}{2+x^2}$ about x = 2 (c) $\frac{1}{x}$ about x = 10
- 5. Using Taylor's series for $\cos x$ prove that $\frac{1}{2} \frac{x^2}{24} < \frac{1 \cos x}{x^2} < \frac{1}{2}$, $x \neq 0$.
- 6. Show that the Taylor's series generated by $f(x) = \frac{1}{1-x}$ at x = 0 converges to f(x) for $x \in (-1/2, 1/2)$.
- 7. Approximation property of Taylor's polynomial: Suppose that f(x) is differentiable on an interval centered at x = a and that

$$g(x) = b_0 + b_1(x-a) + \dots + b_n(x-a)^n$$

is a polynomial of degree *n* with constant coefficients $b_0, b_1 \dots b_n$ and let E(x) = f(x) - g(x). Show that if we impose on *g* the conditions (i) E(a) = 0 and (ii) $\lim_{x \to a} \frac{E(x)}{(x-a)^n} = 0$, then

$$g(x) = f(a) + f'(a)(x-a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a).$$

8. Show that a function f(x) defined by a power series as $f(x) = \sum_{n=0}^{\infty} a_n x^n$ with a positive radius of convergence *R* has a Taylor's series that converges to f(x), for all $x \in (-R, R)$.

- 9. Suppose that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$. Show that
 - (a) If *f* is even, then the Taylor's series for *f* at x = 0 contains only even powers of *x*. That is, $a_{2n-1} = 0$, for all $n \ge 1$.
 - (b) If *f* is odd, then the Taylor's series for *f* at x = 0 contains only odd powers of *x*. That is, $a_{2n} = 0$, for all $n \ge 0$.
- 10. Show by using Taylor's theorem that $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$, for x > 0. (*Hint: By Taylor's theorem*, $\exists c \in (0, x)$ such that $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8(1+c)^{3/2}}$)
- 11. Show by using Taylor's theorem that $|\ln(1+x) (x \frac{x^2}{2} + \frac{x^3}{3})| \le \frac{x^4}{4}$. (*Hint: By Taylor's theorem*, $\exists c \in (0, x)$ such that $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4(1+c)^4}$)
- 12. Show that for $x \in \mathbb{R}$ with $|x|^5 < \frac{5!}{10^4}$, we can replace $\sin x$ by $x \frac{x^3}{6}$ with an error of magnitude less than or equal to 10^{-4} .
- 13. Using Taylor's theorem compute $\lim_{x\to 0} \frac{1-\sqrt{1+x^2}\cos x}{x^4}$. (*Hint: By Taylor's theorem,* $\sqrt{1+x^2} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + ax^6$ and $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + bx^5$, for some constants $a, b \in \mathbb{R}$.)
